## Calculator and QuickCalc USA

## TABLE OF CONTENTS

## Steps in Using the Calculator

## Time Value on Money Calculator

Is used for compound interest calculations involving uniform payments, and can be used to solve a wide variety of financial, mortgage, and loan problems. Similar to the HP10B and Texas Instrument BAll Plus

## Compounding Annual Growth Calculator

Is used to carryout compounding annual growth calculations.

## Discounted Cash Flow Calculator

Is used to calculate the Internal Rate of Return (IRR), the Net Present Value (NPV), and the Modified Rate of Return (MIRR) for a series of cash flows.

## Standard Mortgage Calculator

Is used to produce the mortgage schedules for a standard or conventional mortgage.

## APR/Effective Interest Rate Calculator

Is used to calculate the APR (Annual Percentage Rate) and the Effective True Annual Interest Rate. It can be used to compare several different loan proposals by standardizing their Interest Rates.

## Mortgage Discount Calculator

Is used to determine how much to pay for a mortgage in order to obtain a specified annual return

## Seller Take-Back Mortgage (Cost or Benefit)

Determines the Cost or Benefit of a mortgage provide by the seller to the buyer at an interest either higher or lower the market interest rates for a similar mortgage.

## Mortgage Take Over (Cost/Benefit)

This function is used to calculate the Cost or Benefit to the purchaser of a property incurred by assuming the Seller's mortgage at an Interest Rate that is either higher or lower than the current interest rate for a similar mortgage.

## Mortgage Renegotiation (Cost/Benefit)

This function is used to evaluate the cost or benefit associated with renegotiating your mortgage if interest rates fall.

## Income Property Financing Calculator

This function is used to calculate the loan amount and mortgage payment using the Income and Expenses for the building using the Debt Service Ratio and the Loan to Value Ratio.

## Residential Building. Breakeven Analysis

This function is used to calculate the number of suites that must be rented in order for an apartment building to breakeven.

## Commercial Building. Breakeven Analysis

This function is used to calculate the amount of space (in square feet) that must to be rented in order for the building to breakeven.

## Imperial/Metric Converter

Is used to convert between the Imperial and Metric systems for the following types of measures:

## Area Calculator

Is used to calculate the area of lots, floor plans etc. consisting of one or more shapes.

## Using Calculator

Calculator offers a variety of programs that help you solve real estate and general financial problems enabling you to make wise financial choices.

QuickCalc is the same program as Calculator that can be accessed instantly from any Investit Program by clicking on QuickCalc on the menu bar, and then selecting the desired Calculator program.

Note: With Calculator, you can save your entries under a Project Name. However, QuickCalc entries and calculations cannot be saved

## Steps for using Calculator

1. Open Calculator, which will display the Main Calculator Screen.
2. Click on New Project to open a new project or click on Open Project to call up a saved project.
3. Click on the desired Calculator Program. E.g., Time Value of Money
4. Enter the required information.
5. Click on the Compute Button to calculate and display the results.
6. To Print Reports, click on the Print Reports button.
7. To display the report on the screen, click on Reports on the menu bar and select the desired report.
8. Click on Done to return to the main Calculator screen.

Main Calculator Screen


## Time Value of Money Calculator

Is used for compound interest calculations involving uniform payments, and can be used to solve a wide variety of financial, mortgage, and loan problems.

The program can solve for:

- Present Value (PV)
- Payment
- Interest Rate
- Future Value (FV)
- Time Period

The following examples show the different types of financial problems that can be solved by the Time Value of Money Calculator.

## Example \# 1: Present Value Calculation

How much should I pay for a property which provides a monthly cash flow of $\$ 6,500$ at the beginning of each month for 15 years, if I require an Annual Return of $13 \%$ compounded monthly? The value of the Property at the end of 15 years is estimated to be $\$ 4,100,000$.

| Calculate: | Present Value |
| :--- | :--- |
| Nominal Interest Rate: | $13 \%$ |
| Future Value: | $\$ 4,100,000$ |
| Payment: | $\$ 6,500$ |
| Time Period: | 15 years |
| Settings: |  |
| $\quad$ Payment Frequency: | Monthly |
| $\quad$ Payment made at: | Beginning of Period |
| Compounding Frequency: | Monthly |

Answer: $\quad$ Present Value: $\$ 1,108,774.21$

## Example \# 2: Future Value Calculation

If I invest $\$ 2,000$ per month at the end of each month at $12 \%$ per year, compounded monthly. How much will I have at the end of twenty years?

| Calculate: | Future Value |  |  |  |
| :--- | :--- | :---: | :---: | :---: |
| Nominal Interest Rate: | $12 \%$ |  |  |  |
| Present Value: | $\$ 0.00$ |  |  |  |
| Payment: | $-\$ 2,000$ (outflow) |  |  |  |
| Time Period: | 20 years |  |  |  |
| Settings: | Monthly |  |  |  |
| Payment Frequency: | End of Period |  |  |  |
| Payment made at: | Monthly |  |  |  |
| Compounding Frequency: |  |  |  |  |
| Answer: |  |  |  | Future Value: $\$ 1,978,510.73$ |

## Example \# 3: Nominal Interest Rate Calculation

A lender has loaned $\$ 120,000$ and will receive back $\$ 1,200$ at the end of each month for 5 years plus $\$ 90,000$ at the end of the fifth year.
What is the Annual Return, compounded monthly?

| Calculate: | Nominal Annual Interest Rate |
| :--- | :--- |
| Present Value: | $-\$ 120,000$ (outflow) |
| Future Value: | $\$ 90,000$ (inflow) |
| Payment: | $\$ 1,200$ (inflow) |
| Time Period: | 5 years |
| Settings: |  |
| $\quad$ Payment Frequency: | Monthly |
| $\quad$ Payment made at: | End of Period |
| Compounding Frequency: | Monthly |

Answer: Nominal Annual Interest Rate: 7.907\%

## Example \# 4: Time Period Calculations

If you invest $\$ 300,000$ at $9.5 \%$ compounded monthly plus $\$ 2,000$ per month at the beginning of each month, how long will it take for the investment to grow to $\$ 700,000$ ?

| Calculate: | Time Period |
| :--- | :--- |
| Nominal Annual Interest Rate: | $9.5 \%$ |
| Present Value: | $-\$ 300,000$ (outflow) |
| Future Value: | $\$ 700,000$ (inflow) |
| Payment: | $-\$ 2,000$ (outflow) |
| Settings: |  |
| $\quad$ Payment Frequency: | Monthly |
| $\quad$ Payment made at: | Beginning of Period |
| $\quad$ Compounding Frequency: | Monthly |

Answer: $\quad$ Time Period: 68.86 months

## Example \# 5: Payment Calculation

An owner of an apartment building feels that he will have to replace all of the appliances in 6 years time at an estimated cost $\$ 39,000$. At a Nominal Annual Interest Rate of $4.5 \%$, compounded monthly, how much money will he have to deposit at the beginning of each month in order to have $\$ 39,000$ available at the end of 6 years?

| Calculate: | Payment |
| :--- | :--- |
| Nominal Annual Interest Rate: | $4.5 \%$ |
| Present Value: | $\$ 0.00$ |
| Future Value: | $\$ 39,000$ |
| Time Period: | 6 years |
| Settings: | Monthly |
| Payment Frequency: | Beginning of Period |
| Payment made at: | Monthly |
| Compounding Frequency: |  |

Answer: $\quad$ Payment: $\$ 471.07$ per month

## Notes:

## 1. Mortgage Schedules.

You can use Time Value of Money Calculator to solve mortgage problems, but you may find it easier to use the Standard Mortgage function in Calculator (see below) where you can print out the mortgage schedules.,
2. Handling uneven cash flows

If you are dealing with uneven cash flows, use Discounted Cash Flow Calculator (see below), as Time Value of Money Calculator can only handle uniform payments. The following is an example of an "Uneven Cash Flow"

## Uneven Cash Flow <br> Example

| Year 0 | $-\$ 350,000$ |
| ---: | ---: |
| 1 | $\$ 40,000$ |
| 2 | $\$ 43,000$ |
| 3 | $\$ 49,000$ |
| 4 | $\$ 54,000$ |
| 5 | $\$ 425,000$ |

Time Value of Money Calculator cannot solve this because the periodic payments yearly are uneven. Use the Discounted Cash Flow Calculator.

## Compounding Annual Growth Calculator

Is used to carryout compounding annual growth calculations.
Example: "An Investor has purchased a property for $\$ 600,000$, what will it be worth in 15 years time if she thinks the value will increase at $4 \%$ per year compounded?"

Important Note: The Purchase Price of $\$ 600,000$, which is the Present Value, is entered as a negative value because it is an Outflow or payment i.e. the investor is spending $\$ 600,000$ which is treated as a negative number. When they sell the property in 15 year time, the receive the money from the sale which is a positive number.

| Compounding Annual Growth |  |
| :---: | :---: |
| Calculate <br> $C$ Present Value (PV) <br> - Future Value ( FV ) <br> CAnnual Compounding Rate |  |
| Entries |  |
| Annual Compounding Rate | 4.000\% |
| Present Value | -\$ 600,000.00 |
| Future Value | \$1,080,566.10 |
| No of Years | 15 |

Enter the above data as show in the picture above and then press the Compute button.

The program can calculate: Future Value, Present Value, or Annual Compound Growth Rate.
Answer: \$1,080,566

## Discounted Cash Flow Calculator

Is used to calculate the Internal Rate of Return (IRR), the Net Present Value (NPV), and the Modified Rate of Return (MIRR) for a series of cash flows.

Example: An investor is considering purchasing a rental property for $\$ 900,000$, and expects the annual cash flows listed below. In addition, he anticipates that the building will sell for $\$ 1,500,000$ at the end of the 5th year. What is the:

- Internal Rate of Return (IRR)?
- Net Present Value using a 9\% Discount Rate?
- Modified Internal Rate of Return (MIRR) using a short term borrowing rate of $8 \%$ and a short term reinvestment rate of $3.5 \%$ ?

Note: The investment of $\$ 900,000$ is entered as a negative number because it is an outflow or payment

| Entries |  | Period | Cash Flow |  |
| :---: | :---: | :---: | :---: | :---: |
| Number of Periods | 5 |  |  |  |
|  |  | 0 | -\$ 900,000 |  |
| Investor's Discount Rate | 9.000\% | 1 | \$ 70,000 |  |
|  |  | 2 | \$ 76,000 |  |
| Short Term Financing Rate | 8.000\% | 3 | \$ 78,000 |  |
| Short Term Reinvestment Rate | 3.500\% | 4 | \$81,000 |  |
|  |  | 5 | \$ 1,237,000 |  |
| Results |  |  |  |  |
| Net Present Value (NPV) | \$149,765.74 |  |  |  |
| Internal Rate of Return (IRR) | 12.902\% |  |  |  |
| Modified Internal Rate of Return (MIRR) | 11.757\% | Fill Dow | Fill Up |  |
| Enter the |  |  |  |  |
| above data as show in the picture above and then press the |  | Compute | button. |  |

Note: For more complex analysis involving both before and after tax cash flows, use the Investor program.

## Standard Mortgage Calculator

Is used to produce the mortgage schedules for a standard, or conventional mortgage, where the interest rate is fixed for the entire term, and the blended payment of principal and interest is constant. The following results are produced on the screen:

- Principal and Interest components of each payment
- Outstanding balance at the end of the term
- Principal paid-off over the term
- Interest paid over the term
- Effective Annual Interest Rate

Note: For more complex mortgages with multiple terms, fixed or variable interest rates, and additional payments or borrowing, use the Investor Financier Template.

Example: Calculate the payment, Outstanding Balance at the end of the term, and the Effective Interest Rate for the following mortgage:

Mortgage Amount: \$175,000
Nominal Annual Interest Rate: $7.500 \%$
Amortization Period: 30 years
Term:
Payment Frequency:
3 years Mortgage is paid off at the end of 3 years
Monthly
Payment Made:
Compounding Frequency:

End of Period
Monthly

Standard Mortgage


| Period | Monthly <br> Payments (\$) | Interest (\$) | Principal (\$) | Outstanding <br> Balance (\$) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \$1,223.63 | \$1,093.75 | \$129.88 | \$174,870.12 | - |
| 2 | \$1,223.63 | \$1,092.94 | \$130.69 | \$174,739.43 |  |
| 3 | \$1,223.63 | \$1,092.13 | \$131.50 | \$174,607.93 |  |
| 4 | \$1,223.63 | \$1,091,30 | \$132.33 | \$174,475.60 |  |
| 5 | \$1,223.63 | \$1,090.48 | \$133.15 | \$174,342.45 |  |
| 6 | \$1,223.63 | \$1,089.65 | \$133.98 | \$174,208.47 |  |
| 7 | \$1,223.63 | \$1,088.81 | \$134.82 | \$174,073.65 |  |
| 8 | \$1,223.63 | \$1,087.97 | \$135.66 | \$173,937.99 |  |
| 9 | \$1,223.63 | \$1,087.12 | \$136.51 | \$173,801.48 |  |
| 10 | \$1,223.63 | \$1,086.26 | \$137.37 | \$173,664.11 |  |
| 11 | \$1,223.63 | \$1,085.41 | \$138.22 | \$173,525.89 |  |
| 19 | \& 1 mes\% | © 1 nea 51 | \& 130 no | \& 173 396 8n | $\checkmark$ |
|  |  | Payments | Interest | Principal |  |
| Total |  | \$ 44,050.68 | \$ 38,825.61 | \$ 5,225.07 |  |
| Effective | al Interest Rate | 7.763\% |  |  |  |

Enter the above data as show in the picture above and then press the Compute button.

## APR/Effective Interest Rate Calculator

Is used to calculate the APR (Annual Percentage Rate) and the Effective Annual Interest Rate. It can be used to compare several different loan proposals by standardizing their Interest Rates.

This allows you to compare mortgages using the "Effective True Annual Interest Rate" and choose the best mortgage which is the one with the lowest "Effective True Annual Interest Rate"

Example: A purchaser of a home has been offered the following mortgage. Calculate the:

- Amount advanced to the Borrower
- APR based on Amortization Period
- APR based on Term
- Effective Annual Interest Rate
- Effective True Annual Interest Rate
- Outstanding Balance at the End of Term
- Monthly Payments

| Face Value of Loan: | $\$ 325,000$ |
| :--- | :--- |
| Nominal Annual Interest Rate: | $7.500 \%$ |
| Amortization Period: | 30 years |
| Term: | 5 years. Mortgage is repaid at end of 5 years |
| Loan Fees and Costs | $1.50 \%$ |
| $\quad$ Discount Point: | $\$ 800$ |
| Origination Fee: | $\$ 180$ |
| Appraisal Fee | $\$ 250$ |
| Documentation Preparations: | $\$ 0$ |
| Other Closing Costs: | $\$$ |

The entries and results are shown on the next page.


## Mortgage Discount Calculator

Is used to determine how much to pay for a mortgage in order to obtain a specified annual return.
Example: An investor is considering buying the following mortgage.

| Nominal Annual Interest Rate | $8 \%$ |
| :--- | :--- |
| Monthly Payment | $\$ 3,816$ |
| Remaining Term | 3 Years |
| Balance at the End of Term | $\$ 460,679$ |

How much should she pay for the mortgage to achieve a return of $11 \%$ per year, compounded semiannually?

## Entries;



Enter the above data as show in the picture above and then press the Compute button
Answer;
To achieve a $11 \%$ Nominal Annual Interest Rate, the buyer would pay $\$ 448,251$ for the mortgage.

## Seller Take-Back Mortgage (Cost or Benefit)

Often, the seller of a property provides a mortgage called a "Seller or Vendor Take Back Mortgage" to the buyer of the property. The Interest Rate for the Take Back Mortgage may be different from the current market rate for a similar mortgage. As an example, the Interest Rate for the Take-Back Mortgage is $6.5 \%$ and the market rate for a similar mortgage is $7.25 \%$.

This function calculates the Cost or Benefit of the Seller Take Back Mortgage to the buyer of property.
Example: A purchaser of an Income Property has been offered a vendor's first mortgage which has an interest rate of $7.50 \%$, while the market interest rate for a comparable mortgage is $10.00 \%$. The purchaser would like to know the benefit of the vendor's mortgage.

| Mortgage Amount: | $\$ 1,000,000$ |
| :--- | :--- |
| Contract Nominal Annual Interest Rate: | $7.500 \%$ |
| Amortization Period: | 15 years |
| Term: | 15 years |
| Current Market Interest Rate: | $10.000 \%$ |

Seller Take-Back Mortgage (Cost/Benefit)


|  |  |
| :--- | :--- |
| Current Market Interest Rate |  |
| Benefit of Seller's Mortgage |  |
|  |  |
|  |  |

Enter the above data as show in the picture above and then press the
Compute button.

Answer;

The benefit of the Seller's Mortgage at a Nominal Annual Interest Rate of 7.5\% when the current market rate for a comparable mortgage is $10 \%$ is $\$ 137,346$.

## Mortgage Take Over (Cost/Benefit)

This function is used to calculate the Cost or Benefit to the purchaser of a property in assuming the Seller's mortgage at an Interest Rate that is either higher, or lower than the current interest rate for a similar mortgage.

Example: What is the cost or benefit to the purchaser for assuming the following mortgage?


Answer;

The Cost of assuming the Seller's mortgage at a Nominal Annual Interest of $8 \%$ when the current market rate for a comparable mortgage is $6.25 \%$ is $\$ 9,667$.

## Mortgage Renegotiation (Cost/Benefit)

This function is used to evaluate the cost or benefit associated with renegotiating your mortgage if interest rates fall.

Example: What is the cost or benefit of renegotiating the following mortgage if the interest rate can be reduce from $9.5 \%$ to $6.5 \%$ by paying a 3 months interest penalty plus legal and other fees of $\$ 1,600$ ?

| Mortgage Amount | $\$ 350,000$ |
| :--- | :--- |
| Nominal Annual Interest Rate | $9.5 \%$ |
| Amortization Period | 30 Years |
| Time Period since Mortgage Commenced | 1 Year \& 3 Months |
| Term | 5 Years |
| Mortgage Settings: |  |
| $\quad$ Payment Frequency: | Monthly |
| Payment made at: | End of Period |
| Payment Rounding | Up to the nearest Cent |
| Compounding Frequency | Monthly |
| New Mortgage Details: |  |
| $\quad$ Nominal Annual Interest Rate: | $6.5 \%$ |
| Refinancing Costs: | $\$ 1,600$ |
| Interest Penalty: | 3 Months |

Entries and results are shown on the next page


Enter the above data as show in the picture above and then press the
Answer;
The present value of the money saved by accepting the new mortgage is $\$ 24,284.32$ when discounted at $6.5 \%$.

Consider accepting the new mortgage.

If the answer was negative consider rejecting the new mortgage
When deciding whether to renegotiate a mortgage to lower the interest cost you need to establish the total costs and fees that the lender will charge for redoing the mortgage.

The lender will calculate the interest Rate Differential Cost between the contract interest rate and the proposed interest rate which will be paid by the borrower if the loan is renegotiable. In addition there may be other fees and costs charged.

## Home Financing Calculator

Is used to calculate the loan amount and mortgage payment using the family income and expenses, as well as the:

- Loan to Value Ratio
- Front End Ratio (Housing Ratio)
- Back End Ratio (Total Debt Ratio)

Example: A family would like to know how much they can borrow for a first mortgage on a home they are planning to purchase. The appraised value of the home is $\$ 435,000$.


Enter the above data as show in the picture above and then press the

Answer;
Loan amount based on a LoanNalue Ratio of $75 \%$ is $\$ 326,250$ with monthly payments of $\$ 2,281.19$ with an equity requirement of $\$ 108,750$ ( $25 \%$ ).

Loan amount based on a Front End Ratio (Housing Ratio) of $30 \%$ is $\$ 322,076$ with monthly payments of $\$ 2,252$ with an equity requirement of $\$ 112,924$ (26\%).

Loan amount based on a Back End Ratio (Total Debt Ratio) of 38\% is $\$ 337,236$ with monthly payments of $\$ 2,358$ with an equity requirement of $\$ 97,764(22 \%)$.

Conclusion:
Based on the lending criteria entered, the loan amount based on a Front End Ratio (Housing Ratio) of $30 \%$ is $\$ 322,076$, with monthly payments of $\$ 2,252$ with an equity requirement of $\$ 112,924$ ( $26 \%$ ).

Note: There are a variety of ways to calculate the Front End or Housing Ratio.
The program uses the following formula:
Housing Ratio = $\underline{(\text { Principal Interest }+ \text { Housing Expenses) }) ~}$
Gross Monthly Income

## Income Property Financing Calculator

Example: Calculate the loan amount for a rental apartment building based on the following information:


Answer;

The loan amount is $\$ 5,428,121$ based on a Loan to Value Ratio of $75 \%$ with monthly payments of $\$ 50,319.36$ with an equity requirement of $\$ 1,809,374$ ( $25 \%$ ) based on capitalized value.

The loan amount is $\$ 5,150,671$ based on a Debt Service Ratio of 1.2 with monthly payments of $\$ 47,747.37$ with an equity requirement of $\$ 2,086,824$ (29\%) based on capitalized value.

Conclusion:
Based on the entered lending criteria, the loan amount is $\$ 5,150,671$ based on a Debt Service Ratio of 1.2 with monthly payments of $\$ 47,747.37$ with an equity requirement of $\$ 2,086,824(29 \%)$ based on capitalized value.

## Mortgage Rate Buy Down Calculator

In marketing new developments, such as a condominium project, the developer may offer the purchaser a first mortgage with an Interest Rate that is less than the current Market Interest Rate. He does this by buying down the interest rate from the lender.

This function calculates the Buy Down Mortgage Contract between the Lender and the Developer.
Example: A condominium developer wishes to offer a mortgage to the buyers of the units with an interest rate lower than the market interest rate. He does this in an attempt to make the project more marketable. Calculate the mortgage contract between the Lender and the Developer.

The financial information is:


Enter the above data as show in the picture above and then press the Compute button.
Answer;

| Buy Down Fee | \$ 5,037.30 | Conventional Monthly Payment | \$1,297.82 |
| :---: | :---: | :---: | :---: |
| Effective Annual Interest Rate for Borrower | 6.756\% | Outstanding Balance at End of Term | \$109,334.09 |

## Residential Building. Breakeven Analysis

This function is used to calculate the number of suites that must be rented in order for an apartment building to breakeven, which occurs when the income exactly covers the operating expenses and mortgage payments.

Example: An investor is considering purchasing a 45 suite rental apartment building and wants to know how many suites must be rented in order to breakeven.

| Number of Suites | 45 |
| :--- | :--- |
| Income Per Suite Per Month | $\$ 680$ |
| Annual Fixed Operating Expenses | $\$ 78,000$ |
| Annual Variable Cost Per Suite | $\$ 480$ |
| Annual Debt Service (Mortgage Payments) | $\$ 198,000$ |



Enter the above data as show in the picture above and then press the Compute button.
Answer;
This building will breakeven when $36(80 \%)$ of the suites are rented.

## Commercial Building. Breakeven Analysis

This function is used to calculate the amount of space (in square feet) that must to be rented in order for the building to breakeven, which occurs when the income exactly covers the operating expenses and mortgage payments.

Example: An investor is considering purchasing a 75,800 square foot office building and wants to know how many square feet must be rented in order to breakeven.

| Rentable Area | 75,800 Sq Feet |
| :--- | :--- |
| Average Income Per Sq Feet Per Year | $\$ 23.50$ |
| Annual Fixed Operating Expenses | $\$ 76,000$ |
| Annual Variable Cost Per Sq Foot | $\$ 1.25$ |
| Annual Debt Service (Mortgage | $\$ 958,000$ |
| Payments) |  |


| Rented Area (Sq Feet) |  |
| :--- | ---: |
| Average Income'Sq Ftiryear (including parking) |  |
| Annual Fixed Operating Expenses |  |
| Annual Variable Operating Cost per Sq Foot |  |
| Annual Debt Service |  |

Enter the above data as show in the picture above and then press the
Compute button.

Answer
This building will breakeven when $46,472(61.31 \%)$ square feet is rented.

## Imperial/Metric Converter

Is used to convert between the Imperial and Metric systems for the following types of measures:

- Length
- \$ per area
- Area
- \$ per cubic measure
- Volume (cubic measure)

Example: Convert $\$ 21.00$ per Sq. Ft to $\$$ per Sq. Meter


## Area Calculator

Is used to calculate the area of lots, floor plans etc. consisting of one or more shapes.
The Shape options are:

- Square
- Rectangle
- Triangle
- Circle
- Circle Segment
- Semicircle
- $1 / 4$ Circle
- $3 / 4$ Circle
- Circle Sector

You can calculate areas by adding or subtracting the shapes as necessary.
Example: Calculate the area of this building


To calculate the area, carry out the following steps:

1. Select measurement type E.g., Feet, by pointing and clicking on the "Measurement in "Choice Button to display the measurement options, and then click on the desired option.
2. In the first row click on the Shape Choice Button to display the Shape Options and select the Triangle.
3. Enter the dimensions of the Triangle. i.e., 100 feet, 60 feet, 80 feet.
4. Click on the Add Button to add a new Row.
a. Select the Rectangle Option in the Shape Box for the row.
b. Enter the dimensions of the Rectangle i.e., 50 feet $\times 110$ feet
5. Click on the Add Button to add a new Row.
a. Click on the Action Box in the Row to display the Actions and select Add.
b. Select the Rectangle Option in the Shape Box for the row.
c. Enter the dimensions of the Rectangle i.e., 30 feet $x 60$ feet
6. Click on the Compute Button to calculate the total area.

## Area Calculator



[^0]Answer: Area 9,700 sq. ft.


[^0]:    $\longrightarrow$ Total Area in Feet
    9,700.00

